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Y- =" DISCRIMINATION WITH A SHOWER
MAXIMUM DETECTOR USING NEURAL NETWORKS
FOR THE SOLENOIDAL TRACKER AT RHIC

G.L.Gogiberidze', R.R.Mekhdiyev*

This paper presents a modern approach to discriminate y — n° particles in the RHIC STAR
shower maximum detector using neural nets. At the initial energy of 30 GeV the rejection

factor, approximately 6, has been obtained for no..
The investigation has been performed at the Particle Physics Laboratory, JINR.

Pacno3naBanue y — 2’8 AeTeKTope MAaKCHMYMa JTHBHA

ans 3xcnepumenta STAR Ha komnaiinepe RHIC

I'JI.I'ozubepudse, P.P.Mexmuee

C Mcnons3oBaHKeM METOTHKH HEMPOHKEIX ceTeil B paMkax nakera JETNET cMonenuposaso
pasnesyicHHe Y — T ACTEKTOpE MakcHMyMa JiBHS ycTaHOBKH STAR. Tlpu HauansHoi 3Hepruu

yacTiub! 30 T3B IOCTATHYTO LIECTHKPATHOE MOJARIeHHe T 0 OTHOLIEHHIO K Y-KBaHTaM.
Pa6ora sunonneHa B JJaGopatopuu cBepXBLICOKHX 3Hepruii OUSIH.

1. Introduction

The application of software neural network for the pattern recognition and triggering
tasks, is well known. Here we have used a standard back propagation training algorithm
following the JETNET package [1] to study the problem of discrimination between photons
and neutral pions in the shower maximum detector (SMD) for the solenoidal tracker at
RHIC (STAR Project) [2]. This problem is especially dlfﬁcult at high energies when two
electromagnetic showers initiated by photons from the ° decay are overlapped and appear
as a single cluster in the apparatus.

This ivestigation was motivated by the needs of the STAR experiment for the Y and
Y¥-jet physics, to determine the kinematics of the primary quark-gluon_scattering. On the

other hand, a clean sample of n°’-mesons is important for QCD studies.
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It is also interesting to investigate the ability of the neural network to distinguish two
particle types, and how this ability depends on the energy of primary particles.

2. Pattern Generation

A sampling calorimeter constructed of lead and plastic scintillator layers, was chosen
for electromagnetic end-cup calorimater (EMCE) in STAR Project [2]. The shower maxi-
mum detector, a part of EMCE, is placed at a depth of ~ 5X,, between two longitudinal

segments of EMCE. Its purpose is to measure centroids and lateral profiles of the showers

to help electrons and gamma quanta to be separated from .

To generate patterns for training and testing, 24 strips, 1.0 cm wide, placed in radial
direction, were included to one tower of the EMCE instead of two active plates of shower
maximum detector. The total width of the tower was about 30 cm. Particles were directed
to the central part of the tower, which is rather large and covers half of the tower. For
practical application we suggest that signal can be read out from all strips of the tower as
well as from the strip that covers the halves of the neighbouring towers. The edge effects
of the electromagnetic shower development have not been considered here.

In total, 3000 events of each particle type were generated, 3000 — at the energy of 10,
20, and 30 GeV, correspondingly; 2500 of each set of particles were used for training and
500 — for test purposes. These single particle events have been pulled through the detector
using a STAR simulation program which is close to the official version.

SMD was placed between two longitudinal segments of EMCE.

The amount of material in front of the SMD was estimated as follows:

— 8.0 mm aluminum walls of time projection chamber (TPC);

— 12.7 mm aluminum front plate;

— five layers of EMCE: 5-mm-thick lead absorber plates and 4-mm-thick scintillator
(Polystyrene) tiles;

— 3.2-mm-thick aluminium box of the shower maximum detector.

The maximum value of the magnetic field was 0.5 T.
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Fig.1. The distribution of the total energy deposition in shower maximum detector for ¥ (a) and n°
(b) at 30 GeV
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Fig.4. Profiles of e.m. shower in SMD initiated by 1 GeV (a) and 100 GeV (b) y without (full line)
and with (dotted line) magnetic field of 0.5 T

The distribution of the deposited energy in the SMD for incident y (a) and 0 (b),

correspondingly, is presented in Fig.1. It is clearly seen that even for n° there is a non-zero
probability that the deposited energy disappears from the first longitudinal segment of
EMCE.

Let us enumerate possible cases when it is unachievable to resolve two photons from

the 1° decay:

* One of the photons is missed because it is outside the detector acceptance. Figure 2
shows the distribution of energy deposition depending on the distance from the
location of the SMD strip having maximum energy deposition.

* One of the photons has a low energy and cannot be distinguished from the noise. The

curve presented in Fig.3 shows asymmetry R = (g ;g in the n° decay resulting

in two y-s with energies E1 and E2.
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* One of photons does not give a significant energy deposition in the SMD due to

statistic factors (Y does not convert before the SMD).

* Effective distance between two photons is small, compared with the transverse size

of the electromagnetic shower.

The last effect strongly depends on the thickness of the matter before the SMD and the
magnetic field which turns trajectories of the charged particles and therefore spreads out the
electromagnetic shower. Figure 4 shows the averaged profiles of the e.m. shower in the
SMD strip layers without (full line) and with (dotted line) magnetic filed of 0.5 T for y with
incident energy of 1 GeV (a) and 100 GeV (b), correspondingly.

Only these particles which give the energy deposition in the SMD not less than 40%
on the average, are considered further. About 8% of events were rejected using this cut in
the paper.

3. Network Training

The task to separate y and #° is reduced to determining the correspondence between
selection of the X, input values and Y output values whose true meanings are known

beforehand.

Our strategy was not to use sophisticated variables as, for example, in [3] but just the
energy deposition in strip for input nodes. It is significant, that this method can be used not
only for an off-line analysis, but also for a triggering, of course, with necessary hardware.

The architecture of the network employed in the present study is a conventional one,
i.e., a network of the feed forward type with two hidden layers.

In this paper we do not intend to determine the best architecture, where the number of
the hidden nodes is considered optimal. We have used two layers of hidden nodes. These
results were obtained with the 24-16-8-1 architecture. The increase of the hidden nodes
number does not improve the situation much, but dramatically rises the training time.

Due to the high number of connected weights in the neural network the principle of
mirror symmetry has been used. We have prepared ordinary and «inverted» patterns with
an equal probability, where strip number i was replaced by strip number 24 — i + 1.’

This is done to meet the ordinary requi-
0.3 , rements for neural nets: the number of pat-
terns should be more than the number of the
connected weights by 10 times.

The network starts with random weigths,
the training vector (normalized energy depo-
sited in strips) feeds into the network through;
the output vectors o; (dimensional in our case)

error
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Fig.6. Energy deposition in strips of SMD by: well identified (1), partially identified (b), and poor
identified (c) y (left side) and n° (right side)
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Weights were updated using the Langevin learning procedure which includes the Gaus-
sian noise (0.2 of learning rate in our training). This procedure was repeated every k events.
Our choice was k = 10, ,
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Fig.7. Neural network response (threshold € =
= 0.5) for training (solid line) and testing (dash
line) sets in dependence on the epoch number

Presentation of the number of patterns
equal to their quantity in the test set accor-
ding to the adopted terminology is called
epoch. The decreasing of a mean square
error during the network training is shown
in Fig.5. For each epoch the percentage of
the correctly classified patterns is computed
by means of threshold € = 0.5, classifying an
input as ¥, if the output is greater than €, and
as pion — in another case. It must be
emphasized that various € thresholds can be
used for practical purposes. The neural net
recognizes patterns using shapes of energy
deposition in the SMD strips with different
results: (a) well identified; (b) partially
identified and (c¢) hardly or misidentified y

and n° with the incident energy of 30 GeV
(Fig.6).

The increase of network response (threshold € = 0.5) for training and testing sets in
dependence on the epoch number is presented in Fig.7. The difference illustrates adaptation
of the neural net to the training set. This can be improved by a significant increase of the
training set, but, at present, this way is costly due to CPU time.

4. Results

The set of test events used for checking the neural net response is completely inde-
pendent of the training event set. Figure 8 presents the distribution of e.m. shower width
for the events initiated by photons and pions of 10 GeV (a) and 30 GeV (b) initial energy.

Shower width is defined as follows: W =% Y (R)? x E, for v (solid line) and n° (dashed
k

line), where Rk is the distance between the center of the shower and strip number %, Ek-

energy deposited in the strip. Using this information we can reject Y from ° for the 10 GeV
initial energy, but for 30 GeV the difference is small. With about 10% of y loss, the cut on

the shower transverse size, can reject only 45% of °.

Figure 9 shows the output signal for showers initiated by ¥y and ° for the 10 GeV (a)
and 30 GeV (b) initial energy, correspondingly. As is seen, at the initial energy of 30 GeV
the neural network can reject about 66% of ° with Y losses less than 10%.

To determine a possibility of improving the neural net response using a complementary
information for 30 GeV events, we have combined the EMCE and the SMD information.
Three ddditional input variables have been used:

* Maximum energy in the tower of the first longitudinal part of EMCE divided by the

total energy deposition in this first part;

» The same for the second longitudinal part;
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Fig.8. Distribution of e.m. shower width, as defined in the text, for 10 GeV (a) and 30 GeV (b) initial
energy '
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Fig.9. Neural net output for v (dashed) and ° (solid) of 10 GeV (a) and 30 GeV (b) initial energy

* Total energy deposition in the first longitudinal part is divided by the total energy
deposition in the EMCE.

We have also rejected the events with a small energy value (10% in average) deposited

in the second hidden layer (less than 1% of all events). The 27-20-10-1 architecture and

large number of training epoch (5000) have been used. The discrimination results on

S ° made in the neural net at the initial energy of 30 GeV are given in Fig.10.

Let us define the rejection factor as the ratio of the number of signal gone through
some conditions — to the number of background events also gone through the same con-
ditions. With losses of v less than 50%, the rejection factor, approximately 6, for 70 has
been obtained.

In Ref. [3] it is written that with the energy increasing the relative efficiency of neural
network algorithm for vy — n° separation is better, compared with other algorithms. In our
investigation the efficiency of neural network algorithm does not deteriorate with the
energy increase.

It should be also noted, that despite the fact that the use of the information from EMCE
decreases the mean square error as defined in (1) from 0.14 to 0.12, still it does not
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Fig.10. Neural net output for y (dashed) and n° (solid) with additional EMCE information

drastically improve y - 0 separation. This can be explained in the spirit of [4]. Let us
consider the border patterns, those where the neural net output is close to the border be-
tween the classes, e.g., is about 0.5. Adaptation of the neural net on the training set happens
due to the number of the border patterns in the training set approximately equal to the

number of connected weigths ~ 10%. Additional training of the neural net on these border

patterns (but independent of the initial training set) can improve the situation, but to
generate the patterns requires huge CPU time resources.

5. Conclusion

Back propagation neural network is a powerful tool to study y and n° separation in the
STAR detector. Training and testing were performed with the Monte Carlo data. Results are

presented for «poor» (one layer of strips) SMD choice. Rejection factor against 0 equal to
6 at 53% y-efficiency is achieved for the initial particle energies of 30 GeV.
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